
 Improving Professional Training and Education
 Engagement with Accessible Augmented Reality

 Project F16 by Aidan L and Jeremy F
 [The following milestones are summaries of important entries in our engineering journal]

 Milestone #2: (Started 11.12.21) Camera Implementation and Augmented Reality

 We settled on using Unity to handle three dimensional interactions. We used a script to
 find a front facing camera. Once done so, a Unity WebCamTexture is updated every
 frame by that camera’s input. This texture is then transferred onto a Unity scene object
 for the final camera to render as a UI overlay element.

 Once creating a live display, we moved on to the
 integration of virtual objects. Initially, we created a layer
 filter on the Unity scene camera so it could only see
 objects of that layer’s tag. This filtered camera would then
 be rendered over the camera UI camera for the
 augmented reality effect. However this was more
 cumbersome and hardware intensive, so we pursued a
 simpler method. By switching the canvas to a screen
 space type relative to the camera, the UI overlay to be
 displayed behind the 3D scene instead of in front of it (when rendered as a screen space
 overlay type, the UI is rendered last and therefore behind objects in the scene).

https://docs.google.com/document/d/1_zGUsYSPBECUOkdBvwG8oeDiq6LccyO6gWV2anqljE8/edit?usp=sharing

 Milestone #4: (Started 12.17.21) Integration Between Mediapipe and Unity

 Mediapipe is a versatile and effective hand tracking algorithm that utilizes a
 combination of machine learning and advanced algorithms to track components of a
 hand. However, it only had direct support for languages like Python, Javascript, and C++.
 Although there were also standalone implementations for Android and iOS, they also
 meant that we wouldn’t be capable of computing virtual interactions unless we built a 3D
 rendering system, physics system, and more, from scratch.

 The first alternative was creating a Unity plugin using the .dll filetype in order to
 implement local computing calculations independent from Unity before sending it over.
 However, creating a .dll plugin involves a higher understanding of native structures and
 connections that we decided we wouldn’t be able to learn in time for this project.

 Instead, we used NatML, a free software and structure with support for Mediapipe to
 Unity connections. It allows any instance of our app to download the machine learning
 model from NatML servers. This model is then utilized locally, saving memory space and
 optimizing calculation times since the model is simulated on-device. As a result, we were
 able to create virtual interactions with our new hand
 model.

 Milestone #5: (Started 1.3.22) Implementation on mobile device

 Testing until this point was performed on the Unity
 Editor. Once we built this for an android device, the app
 didn’t track the hand and crashed nearly instantly. We
 implemented Android Logcat to debug the error and
 found a System.Net.WebConnection error. By increasing the API level from 24 to 27, we
 were able to track, but the app was still crashing. Again logcat showed us the error
 stemmed from UnityEngine.Texture2D.ReadPixels which originated in a file type

 conversion method we created that left large artifacts every frame. Once fixed, the app
 ran correctly.

 Milestone #6: (Started 1.15.22) Gesture Recognition

 We originally created rigidbody colliders for the hand landmarks we wanted to track,
 however it was too hardware intensive and had multiple unnecessary dependencies, so
 we opted to manually calculate the distance between the fingertips we wanted to track.
 We tracked the Vector3 positions of each of these objects, then found their relative
 distance. This distance can then be measured to a
 threshold to determine when certain areas of the
 hand are within a ‘pinching’ or ‘grabbing’
 threshold.

 When this threshold is met, the nearest object
 tagged as interactable is ‘grabbed’ by the hand.

 Milestone #7: (Started 1.20.22) Tracking Testing and Conclusion

 This is our testing setup. The device is streaming to discord for us to view its screen. It’s
 at a 60 degree angle of depression and is oriented 32.5 cm away from the real-life
 landmark. Using this correlation between a real-life and virtual landmark, we could test
 a variety of aspects of our design, including the range and accuracy of our hand tracking.
 We additionally tested the amount of time it took for our device to recognize gestures
 and interact with objects.

 Click for Testing Spreadsheet

 Conclusion:

 Our testing showed that our app met

 many of the original criteria;

 tracking accuracy and interaction

 worked as expected, and tracking

 range, which was not part of t

 original criteria, proved to be the

 biggest issue in our design. Otherwise, it is practically functional, but can still be

 improved in certain aspects such as the maximum detection range and depth tracking.

https://docs.google.com/spreadsheets/d/1ffnwVa2hoXNsaFX4lq7sQDNLZ9n5xEFcU00CLDm4kfg/edit?usp=sharing

