
The robot begins by on the right side of the playing
field. It scans for the signal sleeve to determine

which are to park in. It continues along the white
path to the end, from which it begins yellow/green

cycles. The robot then takes an orange/magenta
path to the designated parking area.

Empty our alliance cone stack before parking in the position
detected by our custom signal sleeve.

GAME STRATEGY
GOAL OF AUTONOMOUS

P A G E 1 2

 The robot begins by on the left side of the
playing field. It scans for the signal sleeve to

determine which are to park in. It continues along
the white path to the end, from which it begins

pink/purple cycles. The robot then takes a
teal/olive path to the designated parking area.

T E A M 1 9 8 1 9 A S T R O B R U I N S

Our robot is versatile, allowing us to execute different strategies
based on our alliance partner.

GOAL OF TELEOP

The robot begins in one of three possible parking
spots. It will head towards the substation and
grab a cone. From there, it can take any of the
white arrow paths or cycles depending on the

situation of the game and how far into the game
we are. The yellow spots are potential spots for

defensive beacon placement.

The robot begins in one of three possible
parking spots. It will head towards the

substation and grab a cone. From there, it can
take any of the white arrow paths or cycles

depending on the situation of the game and how
far into the game we are. The yellow spots are

potential spots for offensive beacon placement
*These cycles may be changed depending on the driver, state of the

game, alliance, etc. They are built around the idea of turret adaptability.

Offensive Tele-Op Diagram

Defensive Tele-Op DiagramRight Side Autonomous Diagram

Left Side Autonomous Diagram

AUTONOMOUS PERIOD CODE
ROAD RUNNER: A MOTION PROFILING LIBRARY

P A G E 1 3

BACKUP GLOBAL COORDINATE POSITIONING

T E A M 1 9 8 1 9 A S T R O B R U I N S

As of now we are now using the motion profiling library, roadrunner, to
coordinate autonomous movement. We decided to move to this system in order
to gain better control over the precise movement of our robot. By implementing
roadrunner into our movement scheme, we have been able to take advantage of
the curved paths, known as splines. Splines allow the robot to precisely move in a
pre-programmed path called a trajectory which optimizes robot movement and
allows the robot to move faster and more efficiently. The main functions that we
are using for robot movement are .SplineTo and .AddMarker.

This function enables the robot to be able to
perform certain tasks while driving along a
trajectory. We use the AddMarker function to
move the turret and slides during the autonomous
period while the robot is driving to and from a
junction during the cone stack cycle.

[AddMarker]
This function accepts
parameters of an X,Y
coordinate and a heading
angle

[SplineTo]

In the case the roadrunner does not function properly, we have a backup
global coordinate positioning system. Using traditional odometry calculations,

we can determine the position of the robot without the roadrunner library.

Distance is derived from the input that is given by our
odometry and global positioning function. Using odometry
wheels, the inches that the robot has moved are calculated.
With this function, we input the number of inches we want
the robot to move.

[dist]

The amount of error that the robot is allowed to move from
the distance that it is set, oftentimes in order to minimize the
amount of time that we can take we have to give a margin of
error otherwise the robot will move back and forth.

[allowedDeviation]

The function turnToAngle(); turns the robot to a specified angle from the
robot’s starting position. It keeps logs of the angles and changes in angles. In
order to not overcompensate, the robot continuously moves clockwise and
anticlockwise until it reaches within 2 degrees of the target, when it finally
breaks out of the function. Without this failsafe, the robot may rotate too
much due to the momentum of the rotation motion.

GYROSCOPIC INTEGRATION

This function uses the last stored
angle from the resetAngle(); function
and subtracts it from the current
angle.

getAngleFromLastReset()
The function takes the current angle
and adds or subtracts to keep the
angle value between -180 and 180.

normalizeAngle()

This function stores the final angle
collected from getCurrentAngle();
and recalibrates the robot’s
gyroscope sensor.

resetAngle()
This function logs the present angle
the robot is in opposed to its starting
position, using the in-built gyroscope
sensor in the REV Expansion Hub.

[getCurrentAngle()

Roadrunner Spline Path[SplineTo]

Odometry GCP Vectors

Rev Control Hub IMU

FINITE STATE MACHINES
We used finite state machines in autonomous to

organize asynchronous actions based on the current
state of auton. These states correspond to the

following actions during the autonomous round:
Navigating to the cone stack/high junction, Scoring the

preloaded cone, Intaking from the cone stack, and
Scoring with a cone from the cone stack. These states

are continuously run until the end of auton, at which
time the robot will park in the indicated signal zone.

Parallel Wheel

Perpendicular Wheel

Center of
Rotation

Y Direction +-

Parallel Wheel

P A G E 1 4

OPENCV
One of the first things in autonomous is to detect the side of the signal sleeve that is randomly pointed towards the robot, which
in our case is a square, triangle, or AstroBruins logo. This determines end parking spot, and thus the auton path that follows. In
order to effectively find the pattern, we decided to use OpenCV or computer vision coupled with an off-the-shelf webcam in
order to correctly identify the image.

In order to determine the number of vertices, which in turn
determines the side of the signal sleeve facing the robot, we first apply
a Gaussian blur to the image to cut down background noise. Then, we
identify the contours of the image, searching for sharp turns to count
vertices. An area threshold is applied to all shapes to further eliminate
noise, with objects that do not meet the threshold disregarded, and
the remaining object (signal sleeve shape) has its vertices counted - 4
vertices indicates the square, 3 indicates the triangle, and any other
number would indicate the AstroBruins logo.

The OpenCV Class

GetSignalPosition - At the beginning of gameplay, this function
scans which side of the signal sleeve is facing the robot,
determining the parking area at the end of the autonomous period

Major Functions

T E A M 1 9 8 1 9 A S T R O B R U I N S

[changeInRobotOrientation] - This value is calculated by finding the
difference between the change in position between the left and the right
positions and then dividing that by the distance between the robot’s
encoder wheels.

ODOMETRY/DEAD RECKONING
The algorithm globalCoordinatePositionUpdate() which is implemented
below uses inputs from the encoders which are placed inside of the free-
spinning omni wheels on the sides and back of our robot.

[leftChange and rightChange] - Both of these values are calculated by
finding the differences between the current and previous position of
each of the encoders.

[Updating x Global positioning] - Takes the previous coordinate position
and adds it to the quantity of sum of the average change between the left
and the right encoder multiplied by the sine of the robot’s angle and the
robot’s horizontal encoder’s change multiplied by the cosine of the
robot’s angle.
[Updating y Global positioning] - This is the same as the previous value
except, the sine and cosine are switched.

X
 D

irectio
n

-
+

Lateral Distance

F
o

rw
ar

d
O

ff
se

t

3-Wheel Odometry

 Signal Sleeve Detection with OpenCV

Finite State Machine Flow Chart

AstroCompass
AstroCompass is a class that contains the function
TurnToJunction. TurntoJunction is a custom pipeline developed
using OpenCV to help with ease of use for drivers. Because
yellow has the least amount of Blue, we can simply check the RGB
value for the lowest B value. Once the pole is identified, we use a
series of image processing functions to get the number of pixels
on the left and right sides of the pole. Using this information, we
can automatically align the robot with the pole, reducing the
margin of error greatly. The second driver can then extend the
vertical/horizontal slides and drop the cone onto the targeted
pole.

Junction Image Processing using OpenCV

SLIDE ENCODERS
In order to prevent over-extension or retraction of our

linear slides, we use slide encoders to get the exact
position of the slides. When this position passes a certain

threshold (fully extended/retraced), measured in ticks, the
slide motors are stopped and the driver can no longer

extend or retract, depending on the position the slides are
in.

TELEOP ASSISTANCE
P A G E 1 5

T E A M 1 9 8 1 9 A S T R O B R U I N S

VOLTAGE LIMITER

CONTROLLER 1 CONTROLLER 2

Driver/Reg Control Switch

Rotation of Turret

Movement of Robot

Robot Rotation

Horizontals Sensitive

Align Turret w/ Junction

Intake System (Open/Close)

Horizontal Slides Control

Vertical Slides Extension Vertical Slides Retraction

Power of Linear Slide/Turret
Motors

Due to the fact that our horizontal slides
extend too far upwards to use a conventional
encoder wire, we used the built in voltage
reader in the motor to prevent over extension
and retraction. When voltage spikes past a
certain threshold, horizontal extension and
retraction are locked, preventing breakages.

Voltage Reading Graph

LESSONS LEARNED
The most important lessons learned by software this year came in many

forms. From a technical perspective, we greatly expanded our knowledge
in finite state machines and CV pipelines, which we developed through

constant iteration over the course of the season.

Beyond that, we learned that communication, both within the software
subteam and the greater AstroBruins team as a whole, is integral to

success. To emphasize this aspect of software, we made sure to regularly
consult both the build and drive teams to make sure our goals and

implementations aligned with the needs of the entire team.

